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Introduction

The hybrid method combining finite element (FEM) and
statistical energy analysis (SEA) is an efficient approach
to determine the transmission loss (TL) of complex struc-
tures. In order to simulate the effect of acoustic treat-
ment using for example fibre material, foams and heavy
layers the hybrid theory needs some modification to stay
efficient. This paper deals with the modal implemen-
tation of hybrid theory and the adaptations that are
required to implement the modal approach for acous-
tic treatments. The treatment will be modelled as in-
finite layer using the transfer matrix method (TMM) un-
der consideration of possible simplifications to reduce the
calculation time tremendously. This requires the mode
shape mapping to regular grids. The method is imple-
mented as locally and non-locally reacting trim showing
that the non local approach is too strict for valid results.

Theory

The transmission loss can be calculated using the hybrid
FEM/SEA theory of Shorter and Langley [1] or the dis-
crete implementation of Grahams theory [2] by Peiffer [3].
In the view of hybrid theory the twin chamber arrange-
ment shown in figure 1 consists of the panel as determin-
istic system and the two cavities as random subsystems.

Figure 1: Twin chamber arrangement for TL tests of panels

In the following, random subsystems are called SEA sub-
systems and deterministic subsystems are denoted with
FEM. The coupling loss factor (CLF) describing the en-
ergy flow between the two SEA systems is given by:

η21 =
2

πn2ω

∑
i,j
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dir D−Htot
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ij
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with nm, D
(m)
dir being the modal density and the free field

radiation stiffness of the m-th SEA subsystem, respec-
tively. The free field radiation stiffness is the stiffness
which is seen by the plate due to the connection to the
fluid of the cavities and it is calculated using the wavelet
approach from Langley [4].

The total stiffness matrix Dtot follows from the dynamic
stiffness matrix of the structural system, here the plate

Ds(ω)us = fs (2)

and the radiation stiffness of both connected cavities:

Dtot = Ds + D
(1)
dir + D

(2)
dir (3)

Figure 2: 2D sketch of plate with nodal DOFs and the free
field radiation stiffness of both fluids

The TL of the plate is directly linked to the coupling loss
factor by:

τ ≈ 8π2ωn2
k22A

η21 TL = 10 log10

1

τ
(4)

A is the area of the plate and and k2 the wavenumber of
fluid 2. The above formula eliminates the modal density,
so the TL can be directly derived from the CLF without
any knowledge of the geometry of the connected cavities.
The arrangement is shown in figure 2. All degrees of
freedom (DOFs) are shared by all matrices in equation
(3).

The treatment model

The acoustic treatment can also be modelled by a stiff-
ness matrix formulation, this is not usual as for example
FE implementations are using structural degrees for the
structure side and pressure degrees of freedom for the
fluid side. For simplicity the trim will be modelled in
this paper using a dynamic stiffness matrix, hence:[

DSP
11 DSP

12

DSP
21 DSP

22

]{
u1
u2

}
=

{
f1
f2

}
(5)

In figure 4 such a treatment connected to a structure is
shown. With the local approximation it is assumed, that
only the opposite nodes are connected, this assumption is
valid for very thin layers and the block matrices in equa-
tion (5) are diagonal in that case. However, it will be
shown that the local approximation is not sufficient and

DAGA 2018 München

50



a non-local approach is required. Modern FEM packages
allow the determination of stiffness matrices of complex
combinations of treatment material but the complicated
material laws require costly calculations. In order to pro-
vide a fast method the transfer-matrix-method (TMM)
is used that is well known in the context of SEA [6].{

p1
v1

}
=

[
T11(kx) T12(kx)
T21(kx) T22(kx)

]{
p2
v1

}
(6)

The coordinate in x-direction is given in wavenumber
space by kx. In case of infinite layers - and only then
- kx remains constant in each layer and the in-depth
wavenumber kz =

√
k2 − k2x is changing. When N layers

are connected the total transfer matrix (TM) is:

Ttot = T1 T2 · · ·TN (7)

The TM elements used in this paper are the mass layer

Tmass =

[
1 jωρs
0 1

]
(8)

and the fluid layer

Tfluid(kx) =

[
cos(kzd) jz sin(kzd)

j sin(kzd)
z cos(kzd)

]
(9)

The TM is converted to a stiffness matrix by the follow-
ing relationship under consideration of the convention as
shown in figure 3

DSP (kx) =
jω∆A

Ttot,21

[
Ttot,21 −1
−1 Ttot,22

]
(10)

assuming a regular mesh with constant nodal area ∆A.
This matrix must be converted into the space domain
by inverse fourrier transform. Using Langleys jinc-
function approach [4] and assuming isotropy in the ex-
citing layer this transformation is simple and implies a
finite wavenumber integration.

DSP
ab (xij , ω) =

∆A

2π

∫ ks

0

DSP
ab (k)J0(kxij)kdk (11)

with

a, b = 1, 2 xij =
√
x2i − x2j and ks =

√
2π2

∆x∆y
(12)

being the projected distance between nodes and the max-
imum wavenumer that can be represented be the spacial
sampling of the mesh, respectively. The integral in (??)
is solved numerically. To conclude, using this approach
the stiffness matrix of the trim is available for further
considerations.

Figure 3: Convention for stiffness matrix and TMM

Integration of trim in hybrid theory

The sound package or trim is an additional deterministic
layer that must be considered in the total stiffness ma-
trix. When a layer of acoustic treatment is applied to
one surface of the plate the situation is different (figure
4).

Figure 4: 2D sketch of plate with trim

The degrees of freedom are now separated and DOFs us
of the structure are supposed to coincide with the left
side of the trim, thus us = u1. The total matrix reads
as:([
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]
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D

(1)
dir

D
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dir

]
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s2
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Writing the equations using the upper and lower block
matrix gives[
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ss + D

(1)
dir

]
us + DSP

s2 us = fs (14)

DSP
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[
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]
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The task is to eliminate u2 in order to express the to-
tal stiffness in structural coordinates. Doing this with
equations (14) and (15) leads to([

Ds + DSP
ss + D

(1)
dir

]
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]−1
f2 (16)

With zero external forcer f2 = 0 the total stiffness is:

DSP
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ss + D
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dir

]
−DSP

s2
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So equation (17) provides the new version of the total
stiffness used in equation (1). The next step is to replace

D
(2)
dir by a version that considers the radiation via the

trim. An appropriate way to start this discussion is to
determine the power radiated be the degrees of freedom
from side two.

Π =
ω

2
Im uH

2 f2 =
ω

2
Im uH

2 D
(2)
dir u2 (18)
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With equation (15) the radiated power can be expressed
by structural coordinates us

Π =
ω

2
Im{uH

s DSP,H
2s

[
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dir

]−H
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dir[
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2s us} (19)

The term between both us is called the reduced radiation
stiffness DSP

red and replaces D
(2)
dir in equation (1).
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So, the CLF with trim on side two given by:

ηSP
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(21)

Modal space

The structural stiffness matrix can be simplified by using
a modal base given by a truncated set of mass normalised
modes

Φ = [Φ1Φ2 · · ·ΦN ] with ΦH
m M Φn = δmn (22)

The structural stiffness matrix gets diagonal with

D′ = diag(ω2(1 + jη)− ωn) (23)

η and ωn are the damping loss factor and the model fre-
quency, respectively. The prime ′ denotes the modal co-
ordinates. The modal radiation stiffness is fully popu-
lated and symmetric.

D
(m)′

dir = ΦH D
(m)
dir Φ (24)

The same is true for the block matrices of the trim.

DSP ′

ab = ΦH DSP
ab Φ (25)

From the conversion to modal space follows a useful prop-
erty for the interpretation of this stiffness, the modal ra-
diation efficiency, given by:

σn =
1

ω∆Aρ2c2

Im D
(2)
dir

ΦH
n Φn

(26)

For configurations with trim the reduced radiation stiff-
ness from equation (20) shall be considered.

Applications

In principle the above described method works well with
any FE-structure model that has flat or slightly curved
surfaces as shown in [3]. In addition the mode shape will
be mapped on a regular mesh that makes the calculation
much more efficient, especially the derivation of the radi-
ation stiffness using Langleys method and the trim stiff-
ness matrix. Both matrices depend only on distances be-
tween nodes and the regular mesh leads to several equal
distances tremendously reducing the numerical problem.

Table 1: Simulated trim setups

type thickness material η
50 mm air 1%

Trim1 - m′= 150g/m2 -
50 mm microlite AA

Trim2 - m′= 150g/m2 -

As test application a curved aluminium panel of radius
R = 2m, thickness t = 4mm and an area of 0.8x1.25m2

was selected. The aim of trim1 is to show the deficiencies
of the local approach, for this trim the effect is stronger
because of less damping in the fluid making the cross-
coupling more important. In figure 5 the TL of the bare
structure is shown and compared to results from the com-
mercial software VAOne [7]. The agreement is excellent,
the slight difference may come from a different surface
area that results from different treatment of edge nodes.

Figure 5: Transmission loss of bare panel

The radiation efficiency of the first five modes agrees also
very well and shows that there is efficient radiation in the
high frequency regime (figure 6).

Figure 6: Modal radiation efficiency of the first five modes

The TL results of trim1 express the limitations of the
local approach. It underestimates the TL for low and
overestimates for high frequencies (figure 7). In figure 8
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the differences in the modal radiation efficiency are even
more obvious.

Figure 7: Transmission loss of panel with trim 1

Figure 8: Modal radiation efficiency of the first three modes

The second trim case with the more realistic aerospace
fibre material shows a lower deviation between both ap-
proaches due to the high damping in the wave propaga-
tion of the fluid layer. Thus, for fast estimations the local
approximation might by an option.

In order to explain the effect of acoustic treatment the
bare and trim2 modal radiation efficiency is shown. In
figure 10 one can see that the global performance is im-
proved, but the low frequency is made worse. For exam-
ple a propeller noise excitation from 100-300 Hz would
be better transmitted with that trim 2 than without.

Conclusion

The TMM implementation of trim in the hybrid context
is an appropriate tool for the evaluation of acoustic mea-
sures. It is much faster than full FEM implementations
and may be used for first design. In the near future the
implementation of more complicated layers as foam ma-
terial, plates or perforate layers is intended.
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